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Finite-element thermal-mechanical models for creeping convection are developed. 
Examples using both quasi-Lagrangian and Eulerian formulations are presented and 
compared. Steady-state and transient problems are treated with attention paid to stress 
free boundaries. 

1. INTRODUCTION 

The equations governing the incompressible creeping flow of a viscous fluid 
are often coupled with the equation for heat transfer to describe a number of 
physically significant phenomena. Among these are plastic flow during metal 
forming processes, velocity fields associated with the lubrication of bearings, and 
convection within the earth’s mantle. The coupling may be weak to fairly strong 
depending on the particular application. 

The most common types of coupling are those due to temperature dependent 
viscosity, heat sources due to viscous dissipation, and heat transfer due to con- 
vection. An additional coupling also occurs in free convection due to variations 
in density resulting from thermal gradients. This latter phenomenon is believed 
to occur within the earth’s mantle and presently affords the most plausible expla- 
nation for the moving crustal plates. It is this specific problem which is addressed 
in this paper. 

Since the advent of the new global tectonics there has been a number of papers 
devoted to finite amplitude creeping convection. Early work in this area focused 
on analytical methods as well as combined analytical and numerical techniques. 
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Turcotte and Oxburgh [l I] review this literature which includes perturbation 
methods, Fourier analysis, boundary layer approaches, and finite-difference 
techniques, 

Much of the recent literature has concentrated on the finite-difference method. 
Steady-state solutions have been obtained by iterative techniques (Torrance and 
Turcotte, [lo]) as well as incremental integration in time (e.g., Andrews, [l]). 
When proper initial conditions are known, the latter approach provides a history 
of the convection. 

This paper reports on a new approach to the solution of these equations by the 
finite-element method. Of particular significance are (a) the use of either an 
Eulerian or a quasi-Lagrangian frame of reference, (b) the ability to easily treat 
free surfaces, and (c) a fast convergence to steady-state conditions. 

2. GOVERNING EQUATIONS AND FINITE ELEMENT FORMULATION 

Creeping Viscous Flow 

The equations governing the creeping flow of an incompressible viscous fluid are 

ugj + pxi = 0 (1) 
ui,i = 0 (2) 
Uij = -p6ij + 2tLEij (3) 
%j = S(Ui,j + Uj.i> (4) 

u'ijvj = Ti on S, (5) 
Ui = iii on S, (6) 

where uii is the stress tensor, p is the density, Xi is the body force per unit mass, 
ui is the velocity, p is the pressure, t.~ is the viscosity, vj is the unit normal vector 
to the surface. Tt is the specified surface traction on S, , and Ci is the specified 
velocity on the surface S, . 

Equations (I), (2), and (5) are the Euler equations for the functional 

when extremized with respect to p and all ui satisfying Eq. (6). The pressure term 
in Eq. (7) serves as a Lagrange multiplier for the constraint condition (2). 

The usual finite-element formulation now can be made with approximate 
solutions to Eqs. (l)-(6) found through the condition 

6J = 0. (8) 
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This particular approach to the finite element analysis of incompressible creeping 
flows was first proposed by Thompson, Mack, and Lin [9] and later expanded 
by Thompson and Haque [B]. Similar approaches have been used for incompressible 
elastic solids (Herrmann, [3]; Oden, [6]; Hughes and Allik, [4]). The variation (8) 
when taken with respect to p requires 

6J= -1 6pciidV= 0 (9) 
V 

for arbitrary Sp. If Eq. (2) is to be satisfied as a consequence of Eq. (9), the approxi- 
mation chosen for p must be complete with respect to the approximation for eii . 
When this is the case, there will exist a Sp proportional to Eii such that 

sp = CEii (10) 

which allows Eq. (9) to be written as 

6J = -Cl, EsiEjj dV = 0. (11) 

This equation is only satisfied if Eq. (2) is met everywhere in V. If, therefore, a 
polynomial of degree N is used to approximate Ui within an element volume V, , 
a polynomial approximation of degree N - 1 should be used for the pressure p. 
The resulting finite-element approximation is referred to as complete incompressi- 
bility (Thompson and Haque, [B]). 

It is, however, not necessary to satisfy Eq. (2) everywhere to obtain convergence 
of the finite element method; in fact, faster convergence has been observed when 
this constraint is relaxed (Thompson, [7]). If within each element the pressure is 
taken as constant Eq. (9) can be written as 

8ps l iZ dV = 0 (12) v. 
which only requires 

s et< dV = 0 (13) 
V* 

for arbitrary Sp. Equation (13) expresses an average incompressibility condition 
for each element. This later formulation is referred to as average incompressibility 
and was used for the examples presented in this paper. 

Through the usual techniques associated with the finite element method 
(Thompson and Haque, [B]; Thompson, [7]; Zienkiewicz, [12]) we obtain by 
Es. (8) 

(14) 
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where [K] is the usual stiffness matrix, [G] is the constraint of incompressibility 
on the nodal point velocities {U}, {P} is the matrix of nodal point pressures 
(Lagrange multipliers), and {P} is the matrix of nodal point forces. 

Heat Equation 

The governing equations used to describe the time dependent temperature 
distribution in a convecting conducting fluid are 

pc,((W~t) + u@‘Wi)) = (Vx,W(WW) + Q (15) 
T= T on S, (16) 

(k(aT/ax,) - pcsuiT) vi = q on S, (17) 
P = POU - 4T - TON (18) 

where T is the temperature, k is the coefficient of thermal conductivity, Q is the 
heat source, Tis the specitied temperature on S T, c, is the specific heat at constant 
pressure, S is the specified heat flow across S, , and 01 is the coefficient of thermal 
expansion. The source Q can result from viscous dissipation, radioactive heat 
generation, etc. depending on the specific problem of interest. 

When the convective terms in Eq. (15) are removed, the resulting equation is for 
pure conduction and is applicable in the quasi-Lagrangian formulation described 
in Section 3 of this paper. 

The inclusion of the convective terms in Eq. (15) rules out the possibility of using 
the Ritz formulation of the finite-element method, and we therefore turn to 
Galerkin’s method. Because the general procedure is well domumented in the 
literature (Zienkiewicz, [12]) we provide here only an outline. 

Let the finite-element approximation for temperature be given by 

(19) 

where IV(,) and T(,) are the basis functions and temperatures associated with the n 
nodal points. The parentheses about the subscripts are used to avoid confusion with 
the indices used for Cartesian tensors. 

The weighted residuals found for Eqs. (15) and (17) are 

and 

R, = 5 s 1 (k F TM - PGP~%F~,~) vi - 41 NC,, a. (21) 
B=l % 8 
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We now seek values for either aT(,)/at or TtB) which will cause the above residuals 
to vanish for all NC,), (II equal 1 through n. Integration by parts and the application 
of Green’s theorem gives a set of n algebraic equations. We write them in matrix 
notation as 

WIVI + VW? + {Q> = 0 (22) 

where [H] results from both the gradient and convective terms in Eq. (20), [P] 
derives from the coefficient of the time derivative of temperature in Eq. (20), 
and {Q} contains the sources in V and on S expressed in Eqs. (20) and (21). The 
matrix [K] is nonsymmetric due to the convective terms in Eq. (20). 

If the time rates of change of the nodal point temperatures, {Tj, are known 
(e.g., identically zero for steady-state) Eq. (22) can be used to obtain the nodal point 
temperatures, {T}. For transient conditions when the nodal point temperatures 
are known at a given time, Eq. (22) yields the time derivatives of temperature. 
Although these derivatives can be solved for directly and used to numerically 
integrate the temperatures with time, it is more common to express the derivate 
in finite-difference form at times t and t + d t (Zienkiewicz, [12]). In this manner 
an implicit finite-difference scheme is used in time with a finite-element approxi- 
mation of temperature in space. The resulting matrix equation is 

WI + WI 4mt+,lt = [2[Pl - [HI At](T), - 2 dt{Q>ave . (23) 

where [P] and [H] are evaluated at time t, and 

{Q>me = (l/4 j-oAt tQ> dt. (24) 

or an appropriate approximation thereof. 

3. SOLUTION TECHNIQUES 

The present finite-element formulation for the free convection of creeping fluids 
lends itself well to either a quasi-Lagrangian viewpoint or an Eulerian viewpoint. 
Both have particular advantages depending to a large extent on whether a 
steady-state solution is sought or a transient behavior is of interest. 

The Quasi-Lugrangian Viewpoint 

Due to the absence of the convective terms in the momentum equation, velocity 
can be solved for directly and, for Newtonian viscosity, is a function only of the 
instantaneous geometry and applied forces. It therefore is possible to interpret 
Eq. (14) as a quasi-Lagrangian formulation of the momentum equation and to allow 
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the mesh layout to flow with the fluid. This is easily accomplished by incrementing 
each nodal point coordinate by its corresponding velocity multiplied by the 
change in time for that increment. This procedure corresponds to simple Eulerian 
integration although more accurate methods are possible (Zienkiewicz, [12]). 
When the mesh layout flows with the fluid, the convective terms in the heat 
equation are no longer needed and, for this moving coordinate system, we have 
a case of pure conduction. 

This approach has the obvious advantage of accommodating changes in geometry 
such as might occur at free surfaces and interfaces. When steady-state conditions 
are desired this method is not particularly desirable because of the distortion which 
can occur in the element ,layout with large amplitude flow and which eventually 
requires adjustment of the mesh. 

The Eulerian Viewpoint 

When Eq. (14) is taken as a pure Eulerian formulation, the mesh remains 
stationary in space and the convective terms must be included in the heat equation. 
If geometry changes are unimportant and steady-state conditions are desired, 
this approach is preferable. Its primary advantages are that the mesh layout does 
not become distorted with time and that steady-state convergence often can be 
obtained in three or four iterations for Rayleigh numbers two to three times the 
critical value. It was found that finer meshes and more iterations are needed with 
increasing Rayleigh numbers. Computations could be reduced, however, if a 
fine grid spacing were used in the boundary layers and a coarse spacing in regions 
of less importance. 

The use of the time dependent heat equation to obtain steady-state conditions 
was found to be costly and is not recommended except for the case of free surface 
problems discussed below. 

Free Surface Problems 

An important feature of the finite-element formulation is that surface tractions 
can be specified directly. This need is most common in problems having free 
surfaces where the appropriate nodal point forces can be specihed as zero on the 
right-hand side of Eq. (14). 

For transient problems, the quasi-Lagrangian formulation allows one to follow 
free surface deformations with time. For such problems the finite element method 
is especially well suited. When steady-state free surface configurations are desirable, 
however, this approach may prove too expensive. In these cases, and when the 
surface topography is small, it is possible to arrive at a near steady-state condition 
using the Eulerian steady-state equations and the original surface topography. 
This usually can be obtained in a few iterations, after which the quasi-Lagrangian 
formulation can be used. 
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Solutions of Algebraic Equations 

The matrix equations (14) and (23) are solved by Gauss elimination with a 
program written for sparse matrices. Care must be taken when solving Eq. (14) 
to avoid singularities during the elimination process. This occurs due to the con- 
straint conditions for incompressibility appearing too soon in the elimination. 
These same constraint conditions also prevent iterative procedures, e.g., the Gauss- 
Seidel method, from converging. 

The Basic Algorithms and Comparison of Methods 

Several solution procedures have been described in the preceding material. 
Although these methods differ considerably in their individual advantages and 
disadvantages, they are remarkably similar in terms of their algorithms. The flow 
chart of Fig. 1 illustrates this similarity as well as the step-by-step procedure for 
each method. All methods can be conveniently incorporated into one computer 
code. 

4. TLLUSTRA~VE EXAMPLES 

Five examples are presented in this section. The first was chosen from the 
literature for comparative purposes. The next three illustrate quasi-Lagrangian 
and Eulerian formulations, effects of initial conditions on steady-state solutions, 
and the effect of mesh spacing on stability. The fifth example illustrates the 
technique used for arriving at steady-state free surface conditions. 

All examples were solved using six-nodal-point isoparametric elements with 
average incompressibility. The numerical integration necessary for the formulation 
of the finite element matrices was carried out by a form of Gaussian quadrature 
(Zienkiewicz, [ 121). 

McKenzie, Roberts, and Weiss Model- Example 1 

The finite-element approximation to creeping convection was first evaluated by 
comparing it with a finite-difference approximation reported by McKenzie, 
Roberts, and Weiss [5]. The specific problem consists of a square region of fluid 
in plane flow as shown in Fig. 2(a). The boundary conditions for velocity allow 
slip (zero shear stress) but there are no truly free surfaces, i.e., the fluid is completely 
contained within the square region shown. A horizontal temperature distribution, 
constant with time, is specified on the top surface, and the bottom surface is held 
at a constant uniform horizontal temperature. The two sides are insulated. 

For the case of zero velocity, the steady-state temperature field is governed 
solely by conduction and is shown in Fig. 3(a). However, for any fluid of finite 
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(a) (b) 

Example 1. (a) Boundary conditions; (b) Mesh layout. 

viscosity, a velocity field similar to that shown in Fig. 3(b) will result due to the 
horizontal variation in density and the vertical gravitational field. This clockwise 
convection drives the colder fluid on the right to the lower regions while forcing 
the warmer fluid on the left to rise. Steady-state is reached when the two modes 
of heat transfer, convection and condution, balance. 

(b) 

FJIG. 3. Isotherms and velocity field for Example 1. (a) Steady-state conduction; (b) Typical 
velocity field; (c) Steady-state isotherms R = 4580. 

Steady-state conditions were found by the procedure described in Fig. 1 for 
Rayleigh numbers equal to 45.8, 458.0, and 4,580.O defined by McKenzie et al. as 

R = gaT&3/uv. 

The specific values for the variables in Eq. 25 are shown in Table I. 

(25) 

The initial temperature in each case was taken as the steady-state conduction 
field shown in Fig. 3(a). The maximum number of iterations to reach steady-state 
conditions (less than 0.1 ‘A change in the maximum velocity between two successive 
iterations) was 5, and occurred for the largest Rayleigh number of 4580. The 
steady-state isotherms for this case are shown in Fig. 3(c). To within the accuracy 
of the plotted isotherms there were no discrepancies between the results found by 
the finite element model and those reported by MacKenzie et al. for the three 
Rayleigh numbers tested. 
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TABLE I 

Material Parameters from McKenzie, Roberts, and Weiss [5] 

K = k/p c, = 1.5 x lo-@ mS se& 
p,, = 3.7 x 1Oa kgm-3 
c, = 1.2 x 1Oa J kg-’ 72-l 
g = lOms@ 

p/p = 2 x 101’ mB se+ 
a = 2 x 10-S OC-’ 

To = 0.1, 1.0, 10.0 

Quasi-Lagrangian and Eulerian Coordinates-Example 2 

Both quasi-Lagrangian and Eulerian formulations were used to study the 
transient behavior of the previous problem for R = 4580. The initial condition 
was again the steady-state temperature for pure conduction. An incremant of time 
equal to 6.34 m year was used for the numerical integration. This time is equivalent 
to that needed for a particle to move approximately seven percent of the way 
through one of the double element squares of the original mesh if its velocity 
were equal to the maximum velocity found in the steady-state solution. 

The results after 21 increments are shown in Fig. 4. The location along the 
element boundaries where the isotherms were found to cross are plotted in Fig. 4(a). 
The excellent agreement between the quasi-Lagrangian and Eulerian formulations 
is apparent. 

The displaced mesh obtained from the quasi-Lagrangian model, Fig. 4(b), 
illustrates two interesting points. The first is that the middle region of the mesh 
has little distortion which indicates the nearly rigid rotation of this part of the cell. 
The second is the similarity between the zero isotherm and the displaced middle 
vertical line of the mesh, both shown in Fig. 4(c). Because this line was also the 
zero isotherm at time equal zero, their nearly perfect superposition in the lower 
region indicates the importance of convection at this high a Rayleigh number, 
as well as the fact that the steady-state condition shown in Fig. 3(c) has apparently 
not been reached. 

Efect of Initial Conditions on the Steady-State Solution-Example 3 

It was pointed out by Foster [2] that initial thermal conditions greatly affect the 
history and pattern of convection. This behavior was also found for steady-state 
solutions obtained by iteration of the Eulerian form of the steady-state equations. 
An example of this is shown in Fig. 5 where two steady-state solutions were found 
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for the same problem. The initial temperatures were deliberately chosen so as to 
create the desired two and three celle convection. For this same problem, however, 
attempts to obtain steady-state solutions having one cell and four cells failed, with 
the iteration procedure for both cases converging to a two cell configuration. 

o = LAGRANGIAN 
. E EULERIAN 

(a) 

-*e-d---c ORIGINAL 0°C PARTICLES 
O’C ISOTHERM 

(cl 

(b) 

FIG. 4. Comparison of Lagrangian and Eulerian formulations for transient analysis, Example 
2. (a) Temperature after 21 increments; (b) Lagrangian mesh after 21 increments. 
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, .  /T=O”C-, 

FIG. 5. Multiple steady-state solutions for R = 1.739 R, . (a) Mesh layout, (b) Steady-state 
two-cell convection, (c) Steady-state three-cell convection, (d) Isotherms for twocell convection, 
(e) Isotherms for three-cell convection. 
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The parameters used in this example were the same as those used in the previous 
two examples with the exception of viscosity which was 2 x 10ls m%ec-l. The 
convection is driven by a uniform temperature on the lower boundary. The aspect 
ratio equals three and the Rayleigh number is 1143.5 or 1.739 times its critical 
value. 

Effect of Mesh Spacing-Example 4 

As the Rayleigh number is increased regions of high thermal gradients develop. 
When this occurs, the mesh spacing in these areas must be remred in order to 
maintain numerical stability. Although a thorough study of this problem has not 
been attempted, we present here an example of the difficulty. 

Figure 5(a) shows the mesh used for the analyses of Rayleigh numbers equal 
to 1.739, 3.478, and 6.956 that of the critical value. However, at a value of 
13.915 R, , numerical instabilities resulted. After the mesh had been refined to that 
shown in Fig. 6(a), the iteration scheme converged to the stable steady-state 
patterns shown in Figs. 6(b) and 6(c). 

a 

FIN. 6. Example 4, use of fine mesh to obtain numerical stability. (a) Mesh layout, (b) Three- 
cell velocity field, (c) Three-cell isotherms. 

581/22/2- 8 
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In this particular example the mesh was uniformly doubled in both the vertical 
and horizontal directions. A savings in computer time would result however, if the 
mesh were designed to specifically accommodate the three cell pattern, i.e., a 
slightly larger spacing between nodes in the center region of each cell, thus reducing 
the total number of algebraic equations. 

FIG. 7. Example 5, free surface flow. (a) Initial velocity (b) Steady-state free surface flow, 
(c) Isotherms, (d) Free surface profile. 
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Also of interest is the fact that a two cell configuration for this example could 
not be sustained. 

Free Surface Flow-Example 5 

The free surface techniques described earlier were used for the problems of 
Example 3. After the steady-state solution shown in Fig. 5(b) had been determined, 
the constraint on the upper boundary was removed. The temperature distribution 
of Fig. 5(c) then resulted in the “free-surface” velocity field shown in Fig. 7(a). 
It is clear from this figure that the free surface is not a streamline, a requirement 
necessary for steady-state conditions. 

From this point on, the quasi-Lagrangian formulation was used to move the 
nodal point coordinates forward in time. The maximum displacement used during 
one increment was limited to 0.5 km. Figure 7(b) shows the final velocity field 
obtained after 10 increments of time. At this point nearly all the free surface 
velocities are tangent to the surface-that is, the surface has become a streamline 
indicating a near steady-state condition for the surface profile. The corresponding 
isotherms are shown in Fig. 7(c). 

Because the mean density of the fluid was subtracted in this formulation, the 
gravity effects brought about by the surface topography were accounted for by 
a surface pressure proportional to the change in elevation from the mean. However, 
this is not necessary if the total density of the fluid is used in the formulation. 

For this particular problem, the changes in surface profile are small compared 
to the dimensions of the problem. This profile is shown with an exaggerated vertical 
dimension in Fig. 7(c). 

It should be noted that there are insignificant differences in the velocity and 
temperature fields obtained from the smooth boundary conditions and those 
obtained from the free boundary conditions. This reflects the fact that there was 
very little change in the problem geometry. For the study of flow in the near 
vicinity of ridges or trenches, for instance, free surface geometry could become 
very important. An example of the analysis of very large geometry changes due to 
creeping viscous flow is presented by Thompson and Haque [8]. 

5. CONCLUSION 

The five examples presented in the previous section demonstrate the applicability 
of the finite-element method to the study of creeping convection. The ability to 
use either a quasi-Lagrangian or an Eulerian reference frame is particularly 
advantageous. Free surface boundary conditions are easily handled. The method 
should prove valuable for studies related to mantle convection and plate tectonics. 
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